ViPNet xFirewall 5.6.2: **

новые возможности

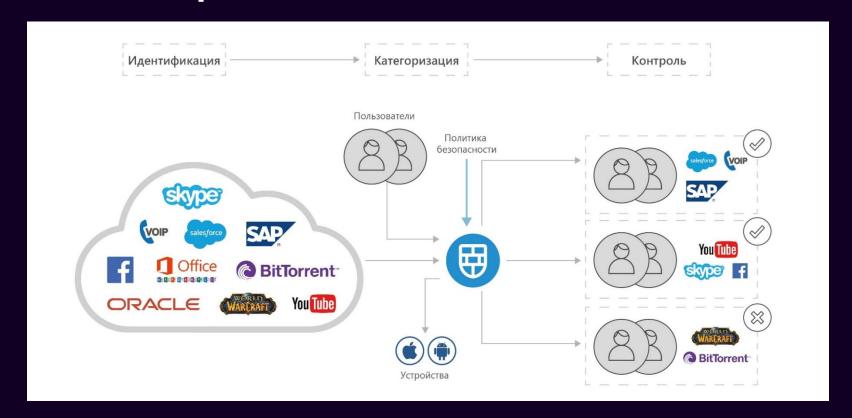
Алексей Данилов

Next-generation Firewall

Next-Generation Firewall (NGFW)

Gartner.

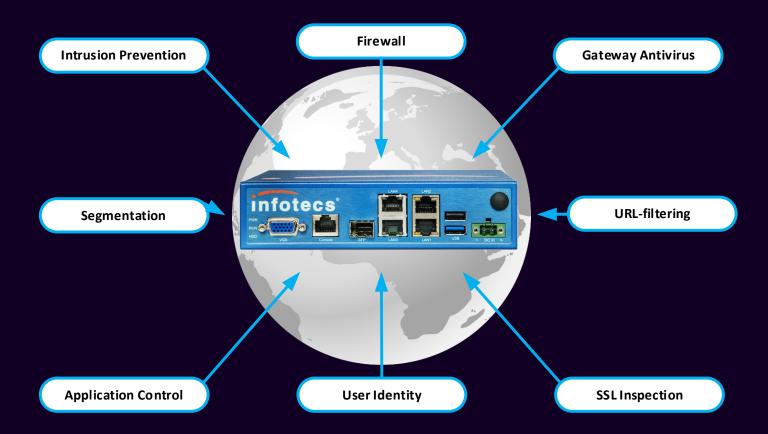
Общепринято МЭ считать устройства, реализующие технологию stateful packet inspection (SPI) сетевого трафика. МЭ разграничивает доступ на основе 5 параметров: адреса отправителя и получателя, порты отправителя и получателя, протокол L4.



МЭ следующего поколения (NGFW) в дополнении к общепринятому разграничению доступа предоставляет возможности по выявлению и блокировке современных угроз, таких как: вредоносное ПО, атаки уровня приложений. Согласно определению Gartner NGFW должен состоять из:

- Стандартный МЭ SPI
- Встроенная система предотвращения атак IPS
- о Система контроля приложений
- Extrafirewall intelligence

NGFW с первого взгляда



*FW ViPNet xFirewall

Что такое ViPNet xFirewall

Сертификат ФСТЭК

СЕРТИФИКАТ СООТВЕТСТВИЯ № 4501

Внесов в государственный реестр системы сертификации средств зациты информации по трибованиям безопасности информации 20 декабря 2021 г.

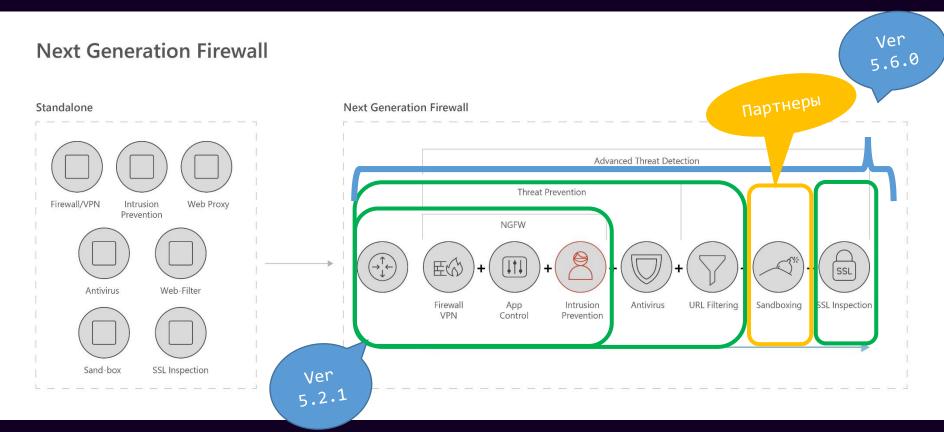
Выдант 28 декабря 2021 гг Дейстингелен до: 28 декабря 2026 гг

Настоящий сиргификат удостоверкет, что программно-аппаративый комплике VIPNet xFirewall 5, разработанный и производимый AD «ИнфоТеКС», является программно-аптаратным средством заприты от несаниционнованного достуга к информации, не содержащей сведений, составляющих государственную тайну, реализующим функции межетелаго экрана и системы обнаружения игоржиний, соответствует требованиям по бозопасности информации, установленным в документах «Требования по безопасности информации, устанавливающие уровни доверия к средствам технический экципы информации и средствам обеспеченик безопасности информационных технологий» (ФСТЭК России, 2020) - по 4 уровню доверия, «Требования и межестепам экрепам» (ФСТЭК России, 2016), «Профиль защиты междетезых экранов типа А четвертого класса экплиты. ИТ.МЭ.А4.ПЭ» (ФСТЭК России, 2016), «Профиль энципы межетеных экранов типа Б четвертого влиста энципы. ИПМЭ.БАЛЭ» (ФСТЭК Россия, 2016), «Требования к системам обнаружения втопнения» (ФСТЭК России, 2011), «Профить защиты систем обнаружения пторметий уровые сили читвертиго класса жириты. ИТ.СОВ.САЛЗ» (ФСТЭК России, 2012) и задачни по безопасности ФРКЕ,465614,002Д1 при выполнении указаний поэксплуатации, принеденных в формуляре ФРКЕ.465614.002ФО.

Серпификат выдав на основанов техноческого ажилочения от 01.31.2021, сфирмациям по результатам струкфунациямиям инпактавий исплатательной забираторной МОУ «ИУФ» (аттестат выкруштация от 18.11.2016 № СЗИ RU.0001.01БН00.Б012), и экспертного заключения от 06.12.2001, офермациями организм по серпификация АО «Лаборазгоры» ПЛПШ» (аттестат экскреризация от 18.03.2017 № СЗИ RU.0001.01БН00.АООБ.

Заявитель: АО «ИнфоТеКС»

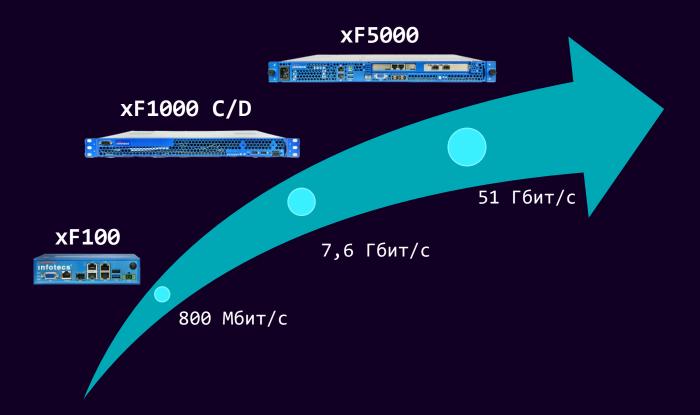
Адрес: 127083, г. Мисква, ул. Мишина, д. 56, стр. 2, эт. 2, помещение IX, воннята 29


Тепефон: (495) 737-6102

ЗАМИСТИТЕЛЬ ДИРЕКТОРА ФСТЭК РОССИИ

- Требования по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020)» по 4 уровню доверия
- «Требования к межсетевым экранам» (ФСТЭК России, 2016), «Профиль защиты межсетевых экранов типа А четвертого класса защиты ИТ.МЭ.А4.ПЗ» (ФСТЭК России, 2016)
- «Профиль защиты межсетевых экранов типа Б четвертого класса защиты ИТ.МЭ.Б4.ПЗ» (ФСТЭК России, 2016)
 - «Требования к системам обнаружения вторжений» (ФСТЭК России, 2011)
- «Профиль защиты систем обнаружения вторжений уровня сети четвертого класса защиты. ИТ.СОВ.С4.ПЗ» (ФСТЭК России, 2012)

ViPNet xFirewall 5.6.0



Релиз 5.6.0

ViPNet xFirewall. Платформы

SSL Inspection – анализ SSL

• Разрешить тот SSL трафик, который известен:

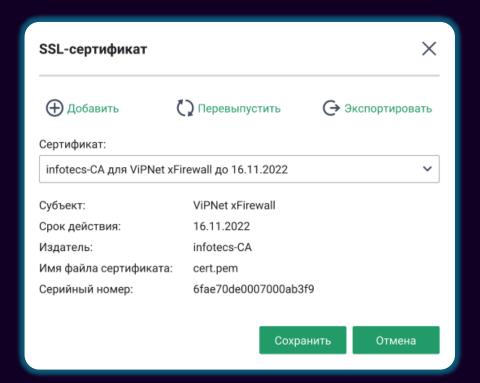
Yandex, Rutube, VK и тд

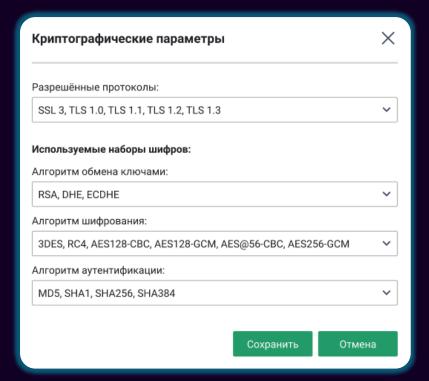
- Блокировать известный SSL запрещенных политикой приложений: Социальные сети, мессенджеры и тд
- Запретить любой неизвестный SSL трафик

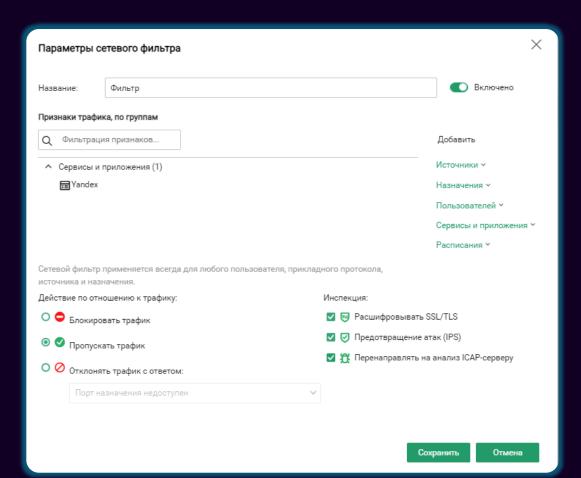
Forward proxy decryption

Корневой сертификат МСЭ (Firewall)

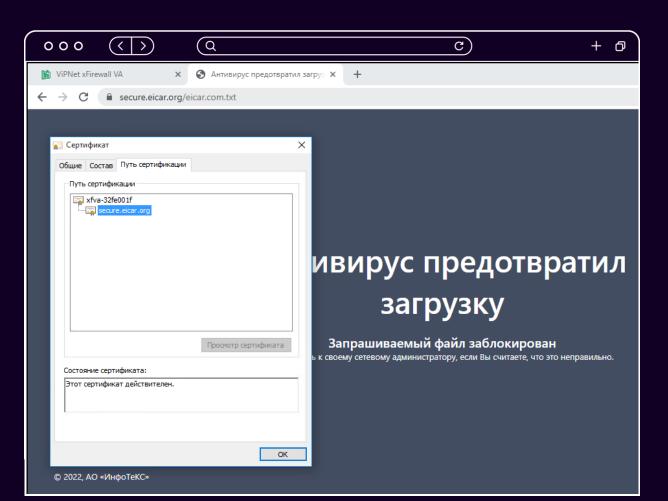
Клиент подтверждает корневой сертификат МСЭ




Лучшие практики SSL Inspection



SSL Inspection



	Расшифровка SSL/TLS	
∰ Статистика и журналы ∨	Общие настройки Исключения	
Межсетевой экран ^		
Сетевые фильтры	Адрес ресурса activation.sls.microsoft.com	
Трансляция адресов (NAT)		
Группы объектов	messenger.live.com	
	Ir.live.net	
ІСАР-сервер	account.live.com	
Пользователи сети	update.microsoft.com	
Расшифровка SSL/TLS	sls.microsoft.com	
Предотвращение вторжений	windowsupdate.microsoft.com	

Создаем правило инспекции

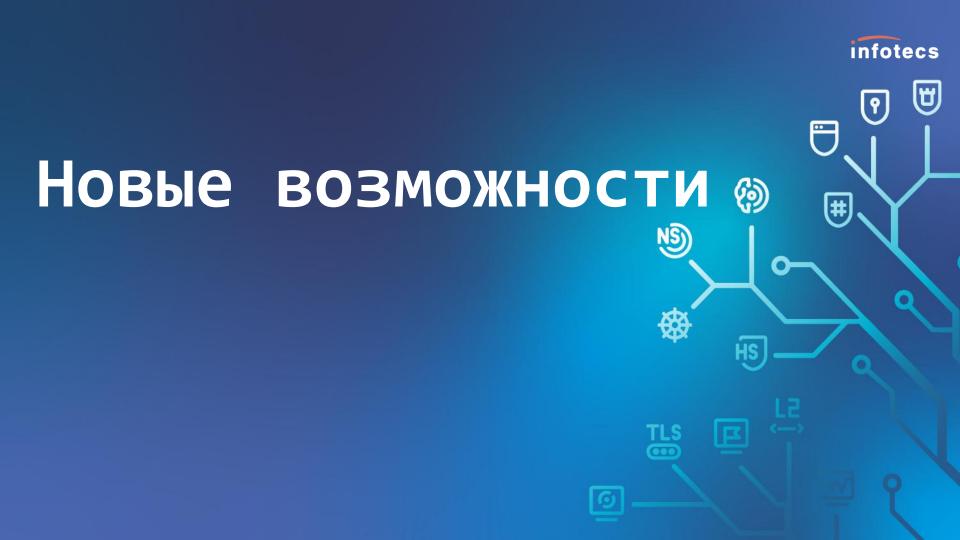
Результат

Блокировка источников повышенной сетевой нагрузки

Directly to black hole

Обработка списков блокировки имеет приоритет перед остальными правилами межсетевого экрана

- 1 раз в минуту ищем заблокированные пакеты
- Если от какого-то адреса регистрируется множество заблокированных пакетов по умолчанию 10 пакетов, то этот адрес включается в список блокировки
- Все адреса из списка блокировки **блокируются на 1800 секунд**
- Адрес удаляется из списка, если отсутствует его сетевая активность



В чем задача и польза

На тестах Заказчика xF1000 C обрабатывал 920 Мбит/сек нагрузки и блокировал 2.5 Гбит/сек DoS атаку.

Задача – защитить ПАК от DDoS и DoS атак и сохранить управляемость

Польза – еще и сети заказчиков стали **немного** защищать от атак

Что нового в 5.6.2

Улучшенный механизм SSL/TLS-инспекции Расширение возможностей агрегированных интерфейсов

Улучшенный пользовательский интерфейс

Поддержка новых аппаратных платформ

Что нового в 5.6.2

RADIUSаутентификация для SSHподключений Сброс к заводским настройкам

Повышена скорость и стабильность отправки СЕF-сообщений **Исправление** ошибок

xF100 Q1/Q2

- Размеры корпуса (ШхВхГ)- 250 х 44 х 227,6 мм
- 6 сетевых интерфейсов:
 - 4 x 1 Гбит/сек RJ45
 - 2 x 1 Гбит/сек SFP
- Незначительно повысилась производительность

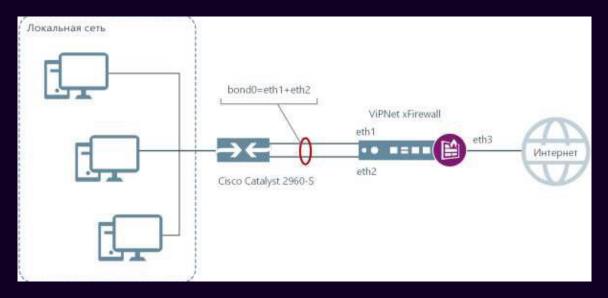
Производительность

Исполнение	xF100 N1	xF100 Q1/Q2
Firewall, 1518 Байт UDP (Мбит/сек)	722	1 600
Firewall, TCP Multistream (Мбит/сек)	600	1 380
AppControl (Firewall+DPI), (Мбит/сек)	180	395
NGFW (FW+DPI+IPS) (Мбит/сек)	13	40
NGFW+SSL Inspection (1МБ)	32	50
Firewall Throughput (UDP 64 Байт)	79 000	137 000
Connections per Second	10 000	18 000
Concurrent Connections	149 993	499 994

Производительность

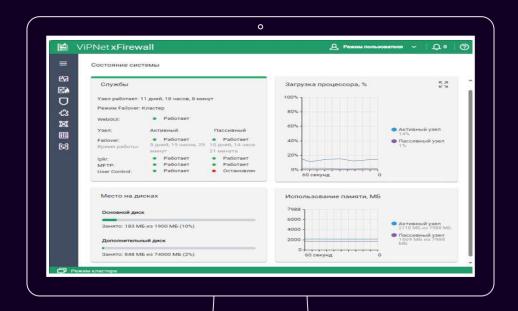
Исполнение	xF1000 Q7/Q8	xF5000 Q2
Firewall, 1518 Байт UDP (Мбит/сек)	7 600	51 000
Firewall, TCP Multistream (Мбит/сек)	11 000	33 000
AppControl (Firewall+DPI), (Мбит/сек)	2 600	7 800
NGFW (FW+DPI+IPS) (Мбит/сек)	480	1 300
NGFW+SSL Inspection (1M6)	480	1 300
Firewall Throughput (UDP 64 Байт)	2 200 000	4 000 000
Connections per Second	53 000	106 000
Concurrent Connections	4 999 000	29 999 990

Улучшения SSL Inspection



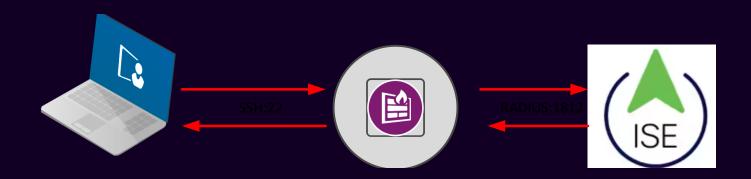
SSL/TLS-инспекция Общие настройки Исключения SSL-сертификат Общие сведения xfva-1a06000c Субъект: Срок действия: 22.11.2028 xfva-1a06000c Издатель: Имя файла: ssl_decryption_cert.pem Серийный номер: ebde8353e52a890e Криптографические параметры Разрешенные протоколы: SSL 3, TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3 Алгоритмы обмена ключами: RSA, ECDHE, DHE Алгоритмы шифрования: 3DES, RC4 Алгоритмы аутентификации: MD5, SHA1, SHA256, SHA384

- Добавлена поддержка расшифровывания протокола TLS 1.3
- о Добавлена возможность инспекции трафика HTTP/2
- Добавлены настройки доверия к сертификатам ресурсов:
 - о проверка срока действия сертификатов;
 - проверка полей сертификата, определяющих его использование (key usage, extended key usage);
 - проверка самоподписанных сертификатов.
- ⊃ Исключать из инспекции веб-ресурсы, используя их альтернативные имена (SAN — Subject Alternative Names) и поддомены (wildcard).


Агрегация интерфейсов

- Ранее вы могли включать в состав агрегированного интерфейса только до трех подчиненных физических. Теперь это ограничение снято.
- Максимальное количество агрегированных интерфейсов увеличено до 8.

Изменен вывод контролируемых параметров



Теперь отображается относительная загрузка CPU, а максимальная загрузка всех ядер принята за 100%.

Radius-аутентификация

- Чтобы пользователь подключался к ViPNet xFirewall в режиме администратора, установите значение атрибута shell:priv-lvl равным 15.
- При другом значении атрибута shell:priv-lvl или при его отсутствии подключение будет выполняться в режиме пользователя.

Возможность возврата к предыдущей версии ViPNet xFirewall

B ViPNet xFirewall добавлена возможность возврата ПО к версии 5.4.0

Сброс к заводским настройкам

GNU GRUB version 0.97 (618K lower / 1047552K upper memory) XF-1000 XF-1000/Text boot XF-1000/Serial console(38400, 8N1) XF-1000/Factory reset XF-1000/Factory reset/Serial console(38400, 8N1) Use the ↑ and ↓ keys to select which entry is highlighted. Press enter to boot the selected OS.

B строке Are you sure you want to execute this command and delete key? Введите

Delete нажмите Enter.

ViPNet xFirewall Add-ons

Принципы GeoIP-фильтрации трафика

Модуль GeoIPфильтрации

Модуль ViPNet xFirewall, позволяющий разграничивать доступ на основе геолокации. Блокирует входящий трафик из заданных регионов.

Первый этап анализа трафика

Это снижает долю трафика, анализируемого DPI, IPS, что повышает эффективность межсетевого экрана.

Белый список

Можно исключить из GeoIP- фильтрации отдельные IP- адреса или подсети.

Next

Прошедший GeoIPфильтрацию трафик обрабатывается другими подсистемами межсетевого экрана.

ViPNet xFirewall xF65000 Межсетевой экран для защиты ЦОДов

xFirewall исполнение xF65000

- о 2U платформа производства Аквариус
- o 4 x 1Gb RJ-45
- 4 x 1Gb SFP
- o 8 x 10Gb SFP+
- о 2 БП

Новые возможности

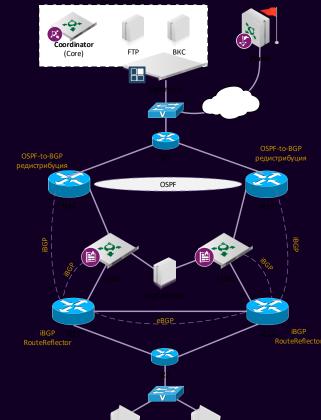
Высокая производительность 85 тыс. правил DPI+IPS без деградации

HA-Cluster Синхронизация сессий

Переключение за 1 сек

Динамическая маршрутизация BGP

OSPF


Шлюзовой антивирус Прокси-сервер Поддержка ICAP

Резервирование 2 блока питания Поддержка BFD

BGP. Моделирование переключения кластера

- о Отключение питания активной ноды xFW1
- Проверить изменение таблицы маршрутизации на xFW1
- Проверить трассировку с РС1 до тестового сервиса (сервер ВКС\FTP). Выведен список хопов через R11 и R21
- На узле РС1 видео-поток не остановился
- Включение питания активной ноды xFW 2
- Проверить изменение таблицы маршрутизации на хFW1
- Проверить трассировку с РС1 до тестового сервиса (сервер ВКС\FTP). Выведен список хопов через R11 и R21
- На узле РС1 видео-поток не остановился

Сравнение производительности

Checkpoint 28000

Firewall

• 145 Гбит/сек

Next Gen Firewall

•51,5 Гбит/сек

ViPNet xFirewall xF65000

Firewall

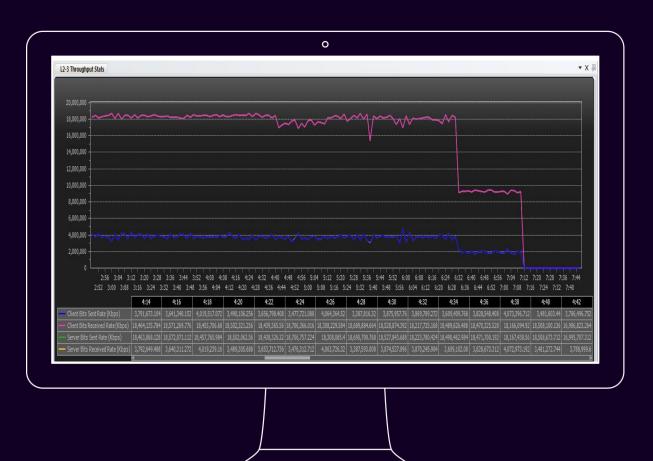
• 76 Гбит/сек

Next Gen Firewall

•60 Гбит/сек

Производительность

Условия тестирования


Протокол/Приложение	Порт	Доля Throughput, %
HTTPS	TCP/443	32,26
SMB/CIFS (MS DS)	TCP/445	30,48
НТТР	TCP/80	5,37
Citrix	TCP/1494	6,94
RDP	TCP/3389	1,4
DNS	UDP/53	0,3
SNMP	UDP/161	1
Syslog	UDP/514	6,89
MS SQL	TCP/1433	9,7
Имитация VNC	TCP/8080	5,66

Проведенные тесты

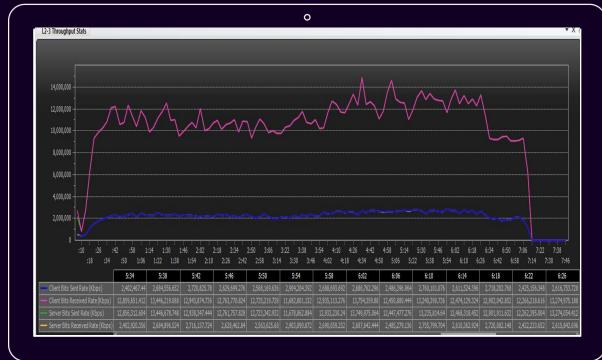

	Характеристика набора правил				Ожидаемая пропускная	Зафиксированы
Номер теста	Количество правил, не менее	Срабатывающее правило	IPS	DPI	способность, не менее, Гбит/с	результаты, Гбит/с
1	85 000	все	нет	да	20	22
2	85 000	все	да	да	10	12
3	85 000	последнее	нет	да	20	22
4	85 000	последнее	да	да	10	12

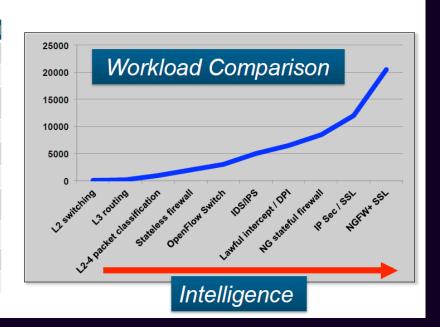
График теста №1



График <u>теста</u> №2

График <u>теста</u> №3

График теста №4



Производительность NGFW

Потребность в производительности

Function	Cycles required
L2 switching	75
L3 routing	200
L2-4 packet classification	1,000
Stateful firewall	2,000
OpenFlow Switch	3,000
IDS/IPS	5,000
Lawful intercept / DPI	6,500
NG stateful firewall	8,500
IP Sec / SSL	12,000
NGFW+ SSL	20,500

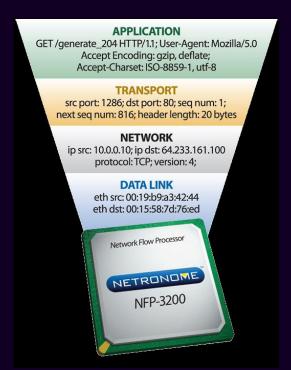
NGFW+SSL Inspection требуют в 10 раз больше вычислительно й мощности по сравнению с обычным МЭ.

Что может процесс Intel в NGFW

Intel Xeon 5645

- 6 cores @ 2.4 Ghz
- 14.4 billion instructions per second

	Instructions Required for line rate operation @ 10 Gbps								
Packet Size	L2 switching	L3 routing	L2-L4 classification	Stateful firewall	IDS/IPS	Lawful Intercept / DPI	NG stateful firewall	IP Sec / SSL	NGFW + SSL
64	1.12 B	2.98 B	14.9 B	29.8 B	74.4 B	96.7 B	126.5 B	178.6 B	305.1 B
128	633 M	1.69 B	8.5 B	16.9 B	42.3 B	54.9 B	71.8 B	101.4 B	173.1 B
256	340 M	906 M	4.5 B	9.1 B	22.6 B	29.4 B	38.5 B	54.3 B	92.8 B
440	204 M	543 M	2.7 B	5.4 B	13.6 B	17.7 B	23.1 B	32.6 B	55.7 B
512	176M	470 M	2.4 B	4.7 B	11.7 B	15.3 B	19.9 B	28.2 B	48.2 B
1024	143 M	383 M	1.9 B	3.8 B	9.6 B	12.5 B	16.3 B	23.0 B	39.3 B
1500	61 M	163 M	813 M	1.6 B	4.1 B	5.3 B	6.9 B	9.8 B	16.7 B



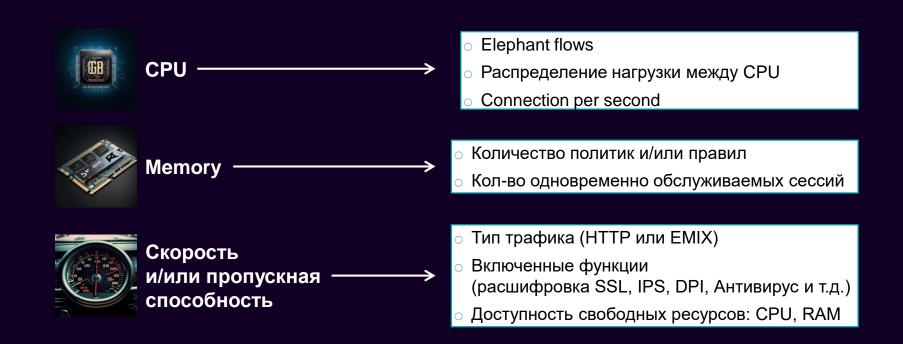
L3-L4 сессия – TCP/UDP – 40 байт для анализа

Ingress Interface
Ethernet Source MAC Address
Ethernet Destination MAC Address
Ethertype
VLAN ID
Source IP Address
Destination IP Address
IP Protocol
TCP/UDP Source Port
TCP/UDP Destination Port
ICMP Type/Code

L7 сессия – приложение -L4+L6+L7 = 40 + 1500 байт

Kak WhatsApp устанавливает сессию

Для установления соединения WhatsApp использует прокол туннелирования STUN и нужно захватить 13 пакетов, чтобы правильно определить приложение.


Facebook WhatsApp/Messenger, Google Hangout/Duo/Meet тоже используют S<u>TUN</u>.

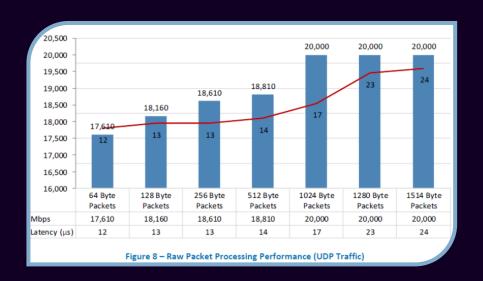
No.	Time	Source	Destination	Protocol	Length	Info	
г 1	0.000000	100 100 10 000	100 100 10 57	STUN	86	Binding	Request
2	0.000000			STUN	86	Binding	Request
3	0.954681			STUN	86	Binding	Request
4	0.954681			STUN	86	Binding	Request
5	1.557299			STUN	86	Binding	Request
6	1.557299			STUN	86	Binding	Request
7	2.234766			STUN	86	Binding	Request
8	2.234766			STUN	86	Binding	Request
9	2.596225			STUN	86	Binding	Request
10	2.596225			STUN	86	Binding	Request
11	2.602773			STUN	86	Binding	Success Response
12	2.602773			STUN	86	Binding	Success Response
13	2.610574			UDP	89	57492 →	40691 Len=47
14	2.610574			UDP	89	57492 →	40691 Len=47
15	2.624611			STUN	86	Binding	Request
16	2.624611			STUN	86	Binding	Request
17	2.627427			STUN	86	Binding	Success Response
18	2.627427			STUN	86	Binding	Success Response
19	2.630845			UDP	991	57492 →	40691 Len=949
20	2.630845			UDP	991	57492 →	40691 Len=949
21	2.630914			UDP	991	57492 →	40691 Len=949
_ ^^	00 0 000000 000 00 00 000 00 000 000 000 0000						
	,						
▶ Ethernet II, Src:							
	▶ Internet Protocol Version 4, Src: ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■						
■ User		ocol, Src Port: 4	0691, Dst Port: 5749	2			

Session Traversal Utilities for NAT

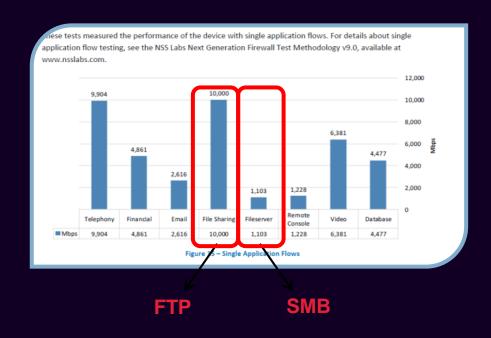
Что влияет на производительность

Покупатели считают, что их вводят в заблуждение

А на сайте обещали другое



Зато порция большая



Palo Alto Networks PA-5220 PAN-OS 8.1.6-h2

Разные приложения – разная скорость

Palo Alto Networks PA-5220 PAN-OS 8.1.6-h2

Чем мы тестируем

Система тестирования производительности, функционала и совместимости сетей и сетевых приложений. Компактное 2-слотовое шасси Ixia XM2.

Решение PerfectStorm ONE компании Ixia представляет собой компактный программно-аппаратный комплекс (ПАК), предназначенный для тестирования систем сетевой безопасности и других сетевых средств реалистичным трафиком атак, приложений и сервисов на уровнях 4-7 модели OSI.

Тесты по методикам и реальность

Самая жесткая методика по RFC 9411

Реальный заказчик

Кол-во правил **максимум 562**

Кол-во правил в 2022 году было около 5 тыс., а в 2023 году стало **10 461**

По методике NSS Labs

Nº	Приложение	Доля трафика, %
1.	Amazon S3	7,73
2.	AOL Instant Messenger	1,16
3.	BitTorrent	10,82
4.	Facebook	5,8
5.	FTP	5
6.	Gmail	9,66
7.	Gtalk	4,64
8.	НТТР	18,69
9.	Simulated HTTPS	9,66
10.	SMTP	1,93
11.	SSH	0,29
12.	Oracle DB	0,28
13.	Twitter	3,09
14.	Yahoo Mail	9,66
15.	YouTube	11,59

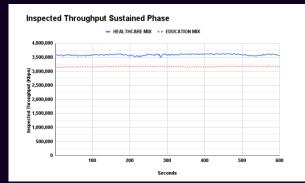
Реальный заказчик

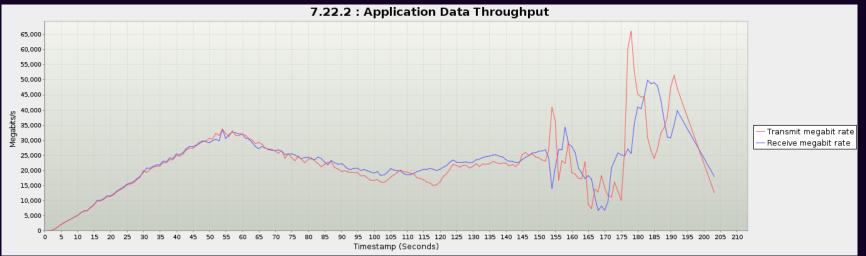
Nº	Приложение	Доля трафика, %
1.	Citrix	5,8
2.	DNS	0,3
3.	Dropbox Sync-Get	7,2
4.	HTTP Text_1	5,8
5.	HTTP VE	8,7
6.	HTTPS Dropbox	19
7.	MAX Bandwidth HTTP_	4,4
8.	RDP	0,4
9.	SMB Client File Download	43,9
10.	SNMP_1	4,5
11.		
12.		
13.		
14.		
15.		

Журналирование

Самая жесткая методика по RFC 9411

Реальный заказчик


Logging and reporting MUST be enabled


Должно быть включено журналирование всего

Продолжительность теста

The minimum RECOMMENDED time duration for the sustain phase is 300 seconds.

Тестирование в идеальных условиях

Исполнение	Производитель А	Производитель Б
Firewall, 1518 byte UDP (Mbps)	до 45 000	До 30 000
Firewall Throughput (Packets Per Second)	4 000 000	
Firewall, TCP Multistream (Mbps)	30 000	40 000

Исполнение	Производитель А	Производитель Б
AppControl (Firewall+DPI) (Mbps)	7 800	32 000
NGFW Througput (Mbps)	1 531	3 900
Connections per Second	85 000	127 000

Казалось бы, победитель известен до старта

Тест «Идеальные условия»

	Производитель А	Производитель Б
МЭ, 1518 байт UDP	45 Гбит/сек	38,2 Гбит/сек
МЭ (пакетов/сек)	4 млн	4,4 млн
Соединений в секунду	85 000	259 000
МЭ, TCP	30 Гбит/сек	34,5 Гбит/сек

Tестирование по методике NSS Labs

Кол-во правил	Производитель А	Производитель Б
1 правило	7,2 Гбит/сек	3,3 Гбит/сек
101 правило	6,6 Гбит/сек	3,1 Гбит/сек
1001 правило	5,5 Гбит/сек	Тест не пройден

Тестирование по методике заказчика

Кол-во правил	Производитель А	Производитель Б
1 правило	700 Мбит/сек	600 Мбит/сек
1001 правило	600 Мбит/сек	500 Мбит/сек
11001 правило	200 Мбит/сек	Тест не пройден

Победителя определяет финиш

infotecs

Спасибо за внимание!